GLOBAL WELL-POSEDNESS FOR THE GENERALISED FOURTH-ORDER SCHRÖDINGER EQUATION
نویسندگان
چکیده
منابع مشابه
Sharp Global Well-posedness for a Higher Order Schrödinger Equation
Using the theory of almost conserved energies and the “I-method” developed by Colliander, Keel, Staffilani, Takaoka and Tao, we prove that the initial value problem for a higher order Schrödinger equation is globally wellposed in Sobolev spaces of order s > 1/4. This result is sharp.
متن کاملGlobal Well - Posedness and Scattering for the Energy - Critical Nonlinear Schrödinger Equation In
We obtain global well-posedness, scattering, and global L10 t,x spacetime bounds for energy-class solutions to the quintic defocusing Schrödinger equation in R1+3, which is energy-critical. In particular, this establishes global existence of classical solutions. Our work extends the results of Bourgain [4] and Grillakis [20], which handled the radial case. The method is similar in spirit to the...
متن کامل6 Global Well - Posedness and Scattering for the Defocusing Energy - Critical Nonlinear Schrödinger Equation in R
We obtain global well-posedness, scattering, uniform regularity, and global L6t,x spacetime bounds for energy-space solutions to the defocusing energy-critical nonlinear Schrödinger equation in R × R. Our arguments closely follow those in [11], though our derivation of the frequency-localized interaction Morawetz estimate is somewhat simpler. As a consequence, our method yields a better bound o...
متن کاملGlobal Well-Posedness for Schrödinger Equations with Derivative
We prove that the 1D Schrödinger equation with derivative in the nonlinear term is globally well-posed in H s , for s > 2/3 for small L 2 data. The result follows from an application of the " I-method ". This method allows to define a modification of the energy norm H 1 that is " almost conserved " and can be used to perform an iteration argument. We also remark that the same argument can be us...
متن کاملWell-posedness and standing waves for the fourth-order non-linear Schrödinger-type equation
We consider the initial value problem for the fourth-order non-linear Schrödinger-type equation (4NLS) which describes the motion of an isolated vortex filament. In the first part of this note we review some recent results on the time local well-posedness of (4NLS) and give the alternative proof of those results. In the second part of this note we consider the stability of a standing wave solut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2012
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972711003327